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Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

ReceiVed: March 1, 2001; In Final Form: May 7, 2001

Periodic patterns of mixed-mode oscillations with successive numbers of small-amplitude oscillations followed
by one large-amplitude oscillation (period-adding phenomenon) have been observed in the asymptotic regime
of the Belousov-Zhabotinsky reaction (bromate-malonic acid-ferroin) in a CSTR (continuously stirred
tank reactor) at decreasing residence times. Such period adding has been predicted by a simple model proposed
recently for a qualitative description of asymptotic and transient oscillations observed in the BZ system.
Patterns qualitatively corresponding to the experimental ones are obtained in this model.

Introduction

Various mixed-mode periodic as well as chaotic oscillations
have been observed experimentally in continuously stirred tank
reactors (CSTRs) in asymptotic regimes. Most experiments have
been performed with the Belosov-Zhabotinsky reaction (BZ),1-6

but mixed-mode oscillations (MMO) have been found also in
other chemical systems.2-4,7,8MMO exhibit patterns of the type
LSn, where L denotes an oscillation with large amplitude, S
means an oscillation with substantially smaller amplitude as
compared with L, andn ) 0, 1, 2, .... In these patterns S
oscillations have their minima close to maximal values of L
amplitudes or (but not and) they have their maxima close to
minimal values of L. Recently, new type of asymptotic mixed-
mode oscillations LSnsm have been observed in the BZ reaction
with ferroin as the catalyst,9 i.e., sustained periodic oscillations
in which small-amplitude oscillations have their minima at a
maximal value of L and, in the same pattern, other small
amplitude oscillations have maxima close to the minimal value
of L.

It is rare in experiments to start just from initial conditions
belonging to a periodic or strange attractor. Therefore, transient
regimes are usually observed before dynamical systems ap-
proach their attractors. One may distinguish two types of
transient regimes in dissipative, dynamical systems. One of them
may be called the Lyapunov neighborhood of an attractor, if a
transient trajectory of the system approaches exponentially the
attractor. This neighborhood is so close to the asymptotic
trajectory that a linear approximation for the difference between
the transient trajectory and the attractor is valid. Therefore, in
the Lyapunov region the transient oscillations have the same
patterns as the asymptotic ones and only quantitative differences
between the both patterns can be observed. Outside of the
Lyapunov neighborhood qualitative differences between tran-
sient and asymptotic patterns may appear. For example, regular
sequences of transient MMO in CSTR at low flow rates of the
reagents have been found in the BZ system (malonic acid (MA),

KBrO3, H2SO4, and ferroin).10 Asymptotic, simple periodic (L)
oscillations for long residence time (τ ) 66.7 min) were
preceded by transient MMO with patterns varying from
(LS3)2(LS2)6(LS1) to (LS5)(LS3)2(LS2)3(LS1), if inflow ferroin
concentration was changed from 0.75× 10-3 to 3.13× 10-3

M, whereas inflow concentrations of remaining reactants were
kept constant. The appearance of these transient regular MMO
followed by asymptotic simple periodic oscillations (L) dem-
onstrates that in initial period of time the system is out of the
Lyapunov neighborhood. Similar behavior with the “transient
period adding” has been found in the BZ system;11 i.e., transient
patterns LSi with i ) 1, 2, ..., 7, followed by L oscillations
only, were observed in turn, if inflow concentration of MA was
changed from 0.109 to 0.163 M.

There appears the natural question concerning dynamical
systems in general:does a subpattern, obserVed in a transient
regime at someValue of a control parameter, appear as an
asymptotic one for appropriately changedValue of the param-
eter?There are no obvious reasons indicating that this question
cannot have the positive answer. For the BZ system this question
reads as follows:can a subpattern obserVed in transient regime
at someValue of the residence time appear as an asymptotic
one, if the residence time is decreased?To our best knowledge
there is a common believe that the answer for the above
questions is positive, but this problem has not been studied in
detail. In the case of the positive answer the next, natural
question appears:which of obserVed transient subpatterns does
appear in an asymptotic regime, if the residence time is
progressiVely decreased?

The aim of this paper is to study these questions in more
details. Experiments in CSTR with the BZ reaction (MA,
KBrO3, H2SO4 and Fe(phen)3

2+) in CSTR have been performed
for various residence times for one of the values of initial
concentrations of the reactants studied previously.10 Both
transient as well as asymptotic patterns have been investigated.
Moreover, we show that qualitatively identical transient and
asymptotic patterns are obtained in the simplest dynamical
model proposed recently9,10,12for the qualitative description of* Corresponding author. E-mail:alk@ichf.edu.pl.
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regularities in transient and asymptotic MMO observed experi-
mentally in the BZ reaction. Studies of this model show that
the most important phenomenon which appears with changes
of a bifurcation parameter is the period-adding sequence of
bifurcations.13,14 These results have been prompted us to look
for the period adding in the experiments.

Experimental Results

The experimental setup used in the present measurements is
similar to that described previously.9,10 All experiments were
carried out in a CSTR at a temperature of 21°C. The total
volume of the reaction mixture was 40 cm3, and the stirring
rate was 900 rpm. In all experiments the initial concentrations
of the reactants in the CSTR were identical and equal to the
following: [KBrO3] ) 0.19 M; [MA] ) 0.68 M; [H2SO4] )
0.32 M; [ Fe(phen)32 +] ) 0.001 125 M. A period of time from
the moment of mixing of the reactants until the registration of
the first LSi sequence was about 2 min. Various values of
inflows of the reactants were used which allowed for the change
of the residence timeτ from about 30 to about 2 min. The
measurements have been performed at least to 8 residence times
in order to be capable to observe asymptotic regular MMO
oscillations with not very long periods.

An example of time series observed in experiments is shown
in Figure 1. This time series was obtained for the residence
time equal to 6 min, and it is described by the pattern
(LS6)(LS5)2(LS4)n(LS3). The transient regime appears as se-
quences of large amplitude (L) oscillations followed by a
decreasing number of small amplitude (S) oscillations, and then
the system exhibits sustained LS3 oscillations. One asymptotic
pattern LS3 is shown only, but this pattern repeats many times
up to the end of the experiment.

Other examples of time series are presented in Table 1. The
patterns shown in Table 1 are reproducible in the sense that
they repeat at least in the subsequent two experiments. The
decreasing of the residence time causes that in the transient
patterns more small amplitude oscillations appear in their
subpatterns. It is noteworthy that the decreasing ofτ causes the
increase by one of a number of small amplitude oscillations in
the asymptotic patterns from LS1 to LS5. This sequence of the
patterns is consistent with five initial patterns observed in the
period-adding phenomenon.15,16

At some values ofτ we have not found periodical patterns
although we continued the measurements up to 12 residence
times. The irregular mixture of L and LS1 has been observed at
τ ) 16 min. The other irregular mixture of subpatterns LS7 and
LS8 has been observed atτ ) 3.9 min in a long period of time
up to 12τ. Also atτ ) 2.4 min a irregular pattern consisting of
subpatterns with L followed by dozen of S oscillations has been
observed. It is noteworthy that the irregular mixture of L and
LS1 appears at the value ofτ belonging to the interval between
two values for which the asymptotic patterns L (forτ ) 21
min) and LS1 (for τ ) 12.8 min) have been observed. It is not
excluded that the two other irregular patterns also appear in
intervals between subsequent periodical patterns, but we are not
able to solve this problem in our experimental setup. At the
moment we are not able to explain if the observed irregular
patterns are determined by deterministic chaotic dynamics or
they are caused by drifts in the inflows of the reactant in our
peristaltic pumps which induces the switching of the system
between two subsequent MMO patterns.

Model

The simple three-variable model which qualitatively describes
various asymptotic MMO observed in the BZ reaction has been

studied recently.13,14 This model was also helpful in the
successful searches of new types of MMO with patterns LSnsm.9

Detailed studies of this model reveal a rich variety of bifurcation
sequences such as period doubling, period adding, broken Farey

Figure 1. Time oscillations of potential Pt (a) and Br (b) electrodes
for the CSTR experiment at the residence timeτ ) 6 min. The pattern
(LS6)(LS5)2(LS4)n(LS3) is observed. One of subpatterns LS3 observed
in the asymptotic regime is shown only.

TABLE 1: Transient and Asymptotic Patterns Observed in
the BZ Reaction in CSTR for Various Residence Times (τ)
at the Conditions [KBrO 3] ) 0.19 M, [MA] ) 0.68 M,
[H2SO4] ) 0.32 M, [Fe(phen)32+] ) 1.125× 10-3 M, and T
) 21 °C and Values of the Parameters Determining the
Dynamics of q(t) in the Four-Variable Model

τ, min pattern q1 g q(0)

27.2 (LS4)(LS3)3(LS2)8(LS1)n(L) 0.37 0.0013 0.225
12.8 (LS5)2(LS3)5(LS2)n(LS1) 0.2695 0.0049 0.222
8.0 (LS5)(LS4)3(LS3)n(LS2) 0.255 0.0053 0.2215
6.0 (LS6)(LS5)2(LS4)n(LS3) 0.242 0.0055 0.219
5.1 (LS7)(LS5)(LS6)n(LS4)
4.8 (LS8)n(LS5) 0.226 0.0280 0.200
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trees, and more complex bifurcations.13,14,16The simple exten-
sion of this model by addition of the fourth variable allowed us
to model regularities in transient patterns as well as asymptotic
ones observed experimentally in the BZ reaction.10-12 The three-
variable version of the model has the form

Assume that the parameters in eqs 1-3 are kept constant and
have the valuesV1 ) 10,V2 ) 11,V3 ) 20,a ) 150,b ) 436.6,
b1 ) 3.714,b2 ) 21.7, andq ) 0.23, whereasr is the bifurcation
parameter, which mimics the changes of the residence timeτ
in the experiments. The asymptotic patterns presented in Table
1 may be obtained for the following values of the bifurcation
parameter: LS1 for r ) 0.07; LS2 for r ) 0.067; LS3 for r )
0.066; LS4 for r ) 0.065; LS5 for r ) 0.06457. All these patterns
exist in some intervals of all parameters. The appearance of
succeeding patterns is scaled according to the formula17

wherern denotes the value for which the pattern LSn appears
andr∞ is the value ofr at which the period-adding sequence is
finished, which means that infinite number of S oscillations
appear in the asymptotic pattern LS∞.

To model transient patterns together with asymptotic ones
the four-variable model must be used, in which the parameter
q is replaced by the additional variable denoted by the same
symbol. The additional variable is necessary to mimic an
accumulation of the bromomalonic acid, which is the very
important intermediate product in the BZ reaction.18 Thus, the
model consists of eqs 1-3 and the following equation which
describes an evolution of the variableq:

Let us note that dynamics for the variableq(t) is as simple
as possible and does not depend on other variables. It depends
only on an initial value ofq(0) and two parameters:γ which
determines the exponential growth ofq andq1 which defines
the asymptotic value ofq. It is noteworthy that both models
are structurally stable. This means that small changes in the
right-hand sides of eqs 1-3 and 5 do not cause qualitative
changes in the asymptotic patterns (trajectories). For all other
parameters constant, a value ofq(0) determines the number of
S oscillations in the first subpattern LSi of a transient regime.
The decrease ofq(0) leads to the increase in a number of S
oscillations in LSi. A value ofq1 determines a number of S in
an asymptotic regime. The decrease ofq1 causes the increase
of a number of S in the asymptotic pattern. The number of
subpatterns which appear in the transient regime is controlled
by γ and the difference betweenq1 andq(0). Decreasing ofγ
or increasing ofq1 - q(0) one can obtain transient patterns with
a greater number of subpatterns LSi. Let us notice that for
infinite time the four-variable model reduces to the three-variable
one described by eqs 1-3 with q ) q1. The values of the
parametersq1 andγ and the initial values ofq(0) ) q0 which
give patterns in transient and asymptotic regimes qualitatively
identical to experimental ones are given in Table 1. For these
patterns the value ofr is equal to 0.065, and all other parameters
in eqs 1-3 are equal to values given above. In this case we

obtain almost complete correspondence between the experi-
mental results shown in Table 1 and the model. It is only the
pattern (LS7)(LS5)(LS6)n(LS4) that we cannot reproduce with
the dynamics ofq assumed in the model, but it can be
reproduced if a dynamics forq(t) richer than its exponential
growth is used. Of course, identical sequences of patterns may
be also obtained for other selections of values of all parameters.

Conclusions

Our experimental results show thatif a transient subpattern
is obserVed in the BZ system at someValue of the residence
time, then it appears as an asymptotic one at smallerValues of
the residence time.In this case the answer to the question
mentioned in the Introduction seems to be positive. Moreover,
from our experiments follow thatthe last subpattern obserVed
in the sequence of transient subpatterns appears in turn in all
but one of asymptotic regimes, if the residence time is progres-
siVely decreased.One exception is the pattern (LS7)(LS5)-
(LS6)n(LS4), in which the monotonic decrease of the number
of S in subsequent subpatterns is not satisfied (LS5 is followed
by LS6). Let us mention that this pattern cannot be so easily
reproduced as all the remaining ones.

However, the results described in the paper of ref 11 in which
inflow concentrations of reactants were far removed from those
studied in the paper of ref 10 seem to show that the answer for
the second question asked in the Introduction may be negative.
Namely, the monotonic increase of the number S oscillations
in the first subpatterns of the patterns was observed with
decrease of the residence time in some range of inflow
concentration of MA (transient period adding), but asymptotic
regimes consisted of L oscillations. These experimental results
were reproduced by the model (1)-(4), of course, with values
of the parameters different from those used in this paper. It is
not excluded that experiments with inflow concentrations of the
reactants the same as used in ref 11 but with shorter residence
times may allow for observations that are consistent with the
positive answer for the first question.

Figure 2. Time oscillations of the variableV(t) for the model (1)-
(4). The parameters in eqs 1-3 are the following:V1 ) 10; V2 ) 11;
V3 ) 20; a ) 150; b ) 436.6;b1 ) 3.714;b2 ) 21.7;q ) 0.23; r )
0.066;q1 ) 0.242;γ ) 0.0055;q0 ) 0.219. The pattern (LS6)(LS5)2-
(LS4)n(LS3) similar to that in Figure 1 is shown. One of subpatterns
LS3 observed in the asymptotic regime is shown only.

V̆ ) r[u - (V - V1)(V - V2)(V - V3) - a] ) rf (u, V) (1)

ŭ ) b - b1p - b2V - u ) g(u, V) (2)

p̆ ) q(V - p) (3)

rn - r∞ ) constant× 1

n2
(4)

q̆ ) -γ(q - q1) (5)
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Detailed studies of the three-variable model (eqs 1-3) reveal
a rich variety of bifurcation sequences such as period doubling,
period adding, broken Farey trees, and more complex bifurca-
tions.13,14These studies may be helpful in experimental searches
not only for a particular MMO with a given pattern but also for
sequences of bifurcations. In this paper the initial sequence of
period-adding bifurcations for the asymptotic regime has been
found. Our experimental setup allowed us to change the
residence time by rather large steps, and therefore, we are not
able to observe asymptotic periodic patterns (LSn) with n > 6.
The irregular mixtures of subpatterns such as L and LS1 or LS7

and LS8 have been observed in asymptotic regimes at values
of the residence times between those corresponding to regular
asymptotic patterns. These observations suggest that the period-
adding sequence seems to appear according to the discussed
model. Pure period adding that is the appearance of patterns
LS1, LS2, ... LSn with only chaotic orbits between them or with
direct transformation of the one of these periodic to the next
one, as it was observed in the other system,15,16 seems to be
excluded.

The model given by eqs 1-4 is capable to reproduce in a
qualitative manner almost all experimental observations, al-
though it does not have a simple relation to any realistic kinetic
scheme of the BZ reaction. However, the model is very simple
and describes also regularities in complex transient regimes
reported previously.10,11Moreover, some qualitative correspon-
dence between the variables of the model and the most important
reagents of the BZ reaction may be suggested. The dynamics
of variableV mimics an autocatalytic reagent, and therefore, it
may correspond to [HBrO2]. The variableu is involved in a
“negative feedback” and may be related to [Br-]. The variable
p can be associated with the catalyst concentration. The
additional variableq may mimic an accumulation of the
bromomalonic acid (BMA) in the BZ reaction. It is reasonable
to assume that the decrease of the residence time causes a
decreasing of an asymptotic concentration of BMA, because
reactants which produce BMA contact themselves shorter in
the CSTR. Asymptotic concentrations of BMA are described
by q1, which should decrease with decreasingτ. Richer

asymptotic patterns have been observed with decreasingτ in
experiments as it was mentioned above, and a similar depen-
dence has been found in the model (see Table 1). Moreover, it
seems reasonable to assume that the decrease ofτ shortens the
achievement of the asymptotic regime for the concentration of
BMA. This assumption should correspond to the increase ofγ
in the model. The values ofγ given in Table 1 confirm this
assumption. The decreasing values ofq(0) for decreasingτ given
in Table 1 are selected as such to ensure the agreement between
the model and the experiments. It is noteworthy that we were
able to reproduce almost all patterns observed in the experi-
ments. Such correspondence has been not always achieved for
more realistic chemical models.

It is noteworthy that our simplest model not only can describe
qualitatively known experimental results but is also useful in
predictions of new regimes in experiments with nonlinear
dynamical systems.
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